Skip to main content

Why Use Multiple LLMs?

Different LLMs excel at different tasks. A well-designed agent system can leverage:
  • Claude - Complex reasoning, nuanced analysis, long context
  • GPT-4 - General purpose, wide knowledge, tool use
  • Gemini - Multimodal, Google ecosystem integration
  • Grok - Real-time data, X/Twitter integration
  • Llama/Open models - Privacy, self-hosting, cost control

Provider Comparison

ProviderStrengthsBest For
Claude (Anthropic)Reasoning, safety, long contextComplex analysis, code review
GPT-4 (OpenAI)Versatility, ecosystemGeneral tasks, plugins
Gemini (Google)Multimodal, speedVision tasks, Google integration
Grok (xAI)Real-time, humorSocial media, current events
Llama (Meta)Open source, self-hostPrivacy-sensitive, offline
MistralEuropean, efficientEU compliance, edge deployment

Model Tiers (Within Providers)

Each provider offers different capability tiers:
ModelUse CaseCost
Claude OpusComplex reasoning$$$
Claude SonnetBalanced default$$
Claude HaikuFast, simple tasks$

Squad Configuration

Agent-Level Provider Selection

Assign different providers to different agents:
# SQUAD.md - Intelligence Squad

## Agents

### market-researcher
**Provider**: Claude Sonnet
**Purpose**: Deep market analysis requiring nuanced reasoning

### social-monitor
**Provider**: Grok
**Purpose**: Real-time X/Twitter monitoring and trend detection

### data-analyst
**Provider**: GPT-4o
**Purpose**: Spreadsheet analysis with vision capabilities

### summarizer
**Provider**: Gemini Flash
**Purpose**: Fast summarization of research findings

Environment Configuration

Set up API keys for each provider:
# .env
ANTHROPIC_API_KEY=sk-ant-...
OPENAI_API_KEY=sk-...
GOOGLE_API_KEY=AIza...
XAI_API_KEY=xai-...

Provider Selection in Code

# Agent: Market Researcher

**Model**: claude-sonnet-4-20250514

## Instructions
Analyze market trends using deep reasoning...

Routing Patterns

Task-Based Routing

Route tasks to the best provider:
Task RequirementBest Provider
Real-time dataGrok
Image analysisGPT-4o / Gemini
Deep reasoningClaude Opus
Google integrationGemini
General tasksClaude Sonnet / GPT-4o

Cascade Pattern

Start cheap, escalate when needed:
1

Start cheap

Gemini Flash (fastest, cheapest)
2

If insufficient

Escalate to Claude Sonnet
3

If still insufficient

Escalate to Claude Opus

Consensus Pattern

Use multiple providers for critical decisions:
Critical Decision → Run in parallel across Claude, GPT-4o, and Gemini → Voting/Synthesis → Final Answer

Cost Optimization

Price Comparison (approximate per 1M tokens)

ProviderInputOutput
Claude Haiku$0.25$1.25
GPT-4o-mini$0.15$0.60
Gemini Flash$0.075$0.30
Claude Sonnet$3.00$15.00
GPT-4o$2.50$10.00
Gemini Pro$1.25$5.00
Claude Opus$15.00$75.00
Prices change frequently. Check provider pricing pages for current rates.

Cost Strategy

## Budget Allocation Example

- 60% → Gemini Flash / GPT-4o-mini (high-volume tasks)
- 30% → Claude Sonnet / GPT-4o (standard tasks)
- 10% → Claude Opus / o1 (complex reasoning)

Implementation Examples

Multi-Provider Squad

# .agents/squads/intelligence/SQUAD.md

name: Intelligence Squad
description: Multi-provider research and analysis

agents:
  - name: trend-scanner
    provider: grok
    model: grok-2-mini
    purpose: Real-time social trend detection

  - name: deep-researcher
    provider: anthropic
    model: claude-sonnet-4-20250514
    purpose: In-depth analysis and synthesis

  - name: data-visualizer
    provider: openai
    model: gpt-4o
    purpose: Chart and image generation

  - name: fast-summarizer
    provider: google
    model: gemini-1.5-flash
    purpose: Quick summaries and translations

Provider Abstraction

Create a unified interface:
// lib/llm.ts
type Provider = 'anthropic' | 'openai' | 'google' | 'xai';

interface LLMConfig {
  provider: Provider;
  model: string;
  temperature?: number;
}

async function query(config: LLMConfig, prompt: string) {
  switch (config.provider) {
    case 'anthropic':
      return queryAnthropic(config.model, prompt);
    case 'openai':
      return queryOpenAI(config.model, prompt);
    case 'google':
      return queryGemini(config.model, prompt);
    case 'xai':
      return queryGrok(config.model, prompt);
  }
}

Best Practices

  • Match provider strengths to task requirements
  • Use cheaper models for high-volume, simple tasks
  • Reserve expensive models for complex reasoning
  • Implement fallbacks across providers for reliability
  • Monitor costs per provider weekly
  • Abstract provider selection for easy switching
Avoid:
  • Using one provider for everything (miss optimizations)
  • Ignoring rate limits (each provider has different limits)
  • Hardcoding provider choice (make it configurable)
  • Forgetting about latency differences